For Supervisor's use only

2

90311





### Level 2 Chemistry, 2003

### 90311 Describe oxidation-reduction reactions

Credits: Four 2.00 pm Monday 24 November 2003

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

A Periodic Table is printed on page 2 of this booklet.

You should answer ALL the questions in this booklet.

If you need more space for any answer, use the pages provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–10 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

| Achievement Criteria  For Assessor's use only |                                       |                                                           |  |  |
|-----------------------------------------------|---------------------------------------|-----------------------------------------------------------|--|--|
| Achievement                                   | Achievement with Merit                | Achievement with Excellence                               |  |  |
| Describe oxidation–reduction reactions.       | Apply oxidation–reduction principles. | Interpret information from oxidation–reduction processes. |  |  |
| Overall Level of Performance                  |                                       |                                                           |  |  |

| Ų  | ) |
|----|---|
| Ļ  |   |
| Ĺ  | ī |
| Ë  |   |
| 2  |   |
| Ц  |   |
| П  | i |
|    |   |
| Щ  |   |
| ð  |   |
| H  |   |
| Щ  |   |
| C  |   |
| Ш  |   |
| Ξ  |   |
| Ω  | 1 |
| <  |   |
| Н  |   |
| C  | ) |
| Ē  | ١ |
| ۲  |   |
| 2  |   |
| Ω  |   |
| ĬΤ |   |
| Ω  |   |
|    |   |

8

| 2<br><b>He</b><br>4.0 | 10<br><b>Ne</b><br>20.2 | 18<br><b>Ar</b><br>40.0 | 36<br><b>Kr</b><br>83.8 | 54<br><b>Xe</b><br>131  | 86<br><b>Rn</b><br>222 |                         |
|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|
| 17                    | 9<br><b>F</b><br>19.0   | 17<br>CI<br>35.5        | 35<br><b>Br</b><br>79.9 | 53<br> <br>127          | 85<br><b>At</b><br>210 |                         |
| 16                    | 8<br><b>0</b><br>16.0   | 16<br><b>S</b><br>32.1  | 34<br><b>Se</b><br>79.0 | 52<br><b>Te</b><br>128  | 84<br><b>Po</b><br>210 |                         |
| 15                    | 7<br><b>N</b><br>14.0   | 15<br><b>P</b><br>31.0  | 33<br><b>As</b><br>74.9 | 51<br><b>Sb</b><br>122  | 83<br><b>Bi</b><br>209 |                         |
| 4                     | 6<br><b>C</b><br>12.0   | 14<br><b>Si</b><br>28.1 | 32<br><b>Ge</b><br>72.6 | 50<br><b>Sn</b><br>119  | 82<br><b>Pb</b><br>207 |                         |
| 13                    | 5<br><b>B</b><br>10.8   | 13<br><b>AI</b><br>27.0 | 31<br><b>Ga</b><br>69.7 | 49<br><b>In</b><br>115  | 81<br><b>TI</b><br>204 |                         |
|                       |                         | 12                      | 30<br><b>Zn</b><br>65.4 | 48<br><b>Cd</b><br>112  | 80<br><b>Hg</b><br>201 |                         |
|                       | ass<br>a                | 1                       | 29<br><b>Cu</b><br>63.5 | 47<br><b>Ag</b><br>108  | 79<br><b>Au</b><br>197 |                         |
|                       | Atomic Mass             | 10                      | 28<br><b>Ni</b><br>58.7 | 46<br><b>Pd</b><br>106  | 78<br><b>Pt</b><br>195 |                         |
| Ξ,                    | i i                     | 6                       | 27<br><b>Co</b><br>58.9 | 45<br><b>Rh</b><br>103  | 77<br>                 | 109<br><b>Mt</b>        |
|                       |                         | 8                       | 26<br><b>Fe</b><br>55.9 | 44<br><b>Ru</b><br>101  | 76<br><b>0s</b><br>190 | 108<br><b>Hs</b>        |
| mic Number 1          |                         | 7                       | 25<br><b>Mn</b><br>54.9 | 43<br><b>Tc</b><br>98.9 | 75<br><b>Re</b><br>186 | 107<br><b>Bh</b>        |
| Ator                  |                         | 9                       | 24<br><b>Cr</b><br>52.0 | 42<br><b>Mo</b><br>95.9 | 74<br><b>W</b><br>184  | 106<br><b>Sg</b>        |
|                       |                         | 5                       | 23<br>V<br>50.9         | 41<br><b>Nb</b><br>92.9 | 73<br><b>Ta</b><br>181 | 105<br><b>Db</b>        |
|                       |                         | 4                       | 22<br><b>Ti</b><br>47.9 | 40<br><b>Zr</b><br>91.2 | 72<br><b>Hf</b><br>179 | 104<br><b>Rf</b>        |
|                       |                         | ო                       | 21<br><b>Sc</b><br>45.0 | 39<br><b>Y</b><br>88.9  | 71<br>Lu<br>175        | 103<br><b>Lr</b><br>262 |
| 7                     | 4 <b>Be</b> 9.0         | 12<br><b>Mg</b><br>24.3 | 20<br><b>Ca</b><br>40.1 | 38<br><b>Sr</b><br>87.6 | 56<br><b>Ba</b><br>137 | 88<br><b>Ra</b><br>226  |
| ~                     | 3<br>E:<br>6:9          | 11<br><b>Na</b><br>23.0 | 19<br><b>K</b><br>39.1  | 37<br><b>Rb</b><br>85.5 | 55<br><b>Cs</b><br>133 | 87<br><b>Fr</b><br>223  |

| 70        | 102       |
|-----------|-----------|
| <b>Yb</b> | <b>No</b> |
| 173       | 255       |
| 69        | 101       |
| <b>Tm</b> | <b>Md</b> |
| 169       | 258       |
| 68        | 100       |
| <b>Er</b> | <b>Fm</b> |
| 167       | 257       |
| 67        | 99        |
| <b>Ho</b> | <b>Es</b> |
| 165       | 254       |
| 66        | 98        |
| <b>Dy</b> | <b>Cf</b> |
| 163       | 251       |
| 65        | 97        |
| <b>Tb</b> | <b>Bk</b> |
| 159       | 249       |
| 64        | 96        |
| <b>Gd</b> | <b>Cm</b> |
| 157       | 247       |
| 63        | 95        |
| <b>Eu</b> | <b>Am</b> |
| 152       | 241       |
| 62        | 94        |
| <b>Sm</b> | <b>Pu</b> |
| 150       | 239       |
| 61        | 93        |
| <b>Pm</b> | <b>Np</b> |
| 147       | 237       |
| 60        | 92        |
| <b>Nd</b> | <b>U</b>  |
| 144       | 238       |
| 59        | 91        |
| <b>Pr</b> | <b>Pa</b> |
| 141       | 231       |
| 58        | 90        |
| <b>Ce</b> | <b>Th</b> |
| 140       | 232       |
| 57        | 89        |
| <b>La</b> | <b>Ac</b> |
| 139       | 227       |

Lanthanide Series

Actinide Series

#### **QUESTION ONE: Redox Reactions in the Laboratory**

When acidified potassium permanganate solution is added to freshly prepared iron(II) nitrate solution, a reaction occurs. The unbalanced equation is shown below:

$$MnO_4^- + Fe^{2+}$$
 æÆ  $Fe^{3+} + Mn^{2+}$ 

- (a) Is the MnO<sub>4</sub><sup>-</sup> ion oxidised or reduced? Use oxidation numbers to justify your answer.
- (b) Identify the oxidant and reductant in the reaction above.

Oxidant:

Reductant:

(c) Write balanced equations for the oxidation and reduction half reactions.

Oxidation:

Reduction:

(d) Combine the half equations in (c) to give the balanced equation for this oxidation–reduction reaction.

(f) Complete the table below for EACH combination of species.

| Species to be mixed                             | Does a reaction occur? (yes or no) | If a reaction occurs, describe what would be observed. | If a reaction occurs, write a balanced equation for the reaction. |
|-------------------------------------------------|------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| (i) $Cl_2(aq) + Br^-(aq)$                       |                                    |                                                        |                                                                   |
| (ii) Cl <sup>-</sup> (aq) + I <sub>2</sub> (aq) |                                    |                                                        |                                                                   |

Assessor's use only

#### **QUESTION TWO: Oxidation of Wine**

Assessor's use only

Wines often contain a small amount of sulfur dioxide that is added as a preservative. If too little is added, the wine is oxidised to vinegar. If too much is added, it affects the taste of the wine.

The sulfur dioxide content of wine can be determined using a reaction with iodine,  $I_2$ , to produce sulfate and iodide ions.

(a) What is the oxidation number of sulfur in EACH of the following?

(i) SO<sub>2</sub> \_\_\_\_\_

(ii) SO<sub>4</sub><sup>2-</sup>\_\_\_\_

(b) Write ion–electron half equations for the oxidation and reduction reactions occurring between  $SO_2$  and  $I_2$ .

(c) Combine the half equations in (b) above to form a balanced equation.

(d) The alcohol content of the wine can be determined by a reaction with acidified potassium dichromate.

What colour change would be observed if excess wine is added to acidified potassium dichromate solution? Link the colour change observed to the species responsible for the observed colour. (Neither the alcohol nor its oxidation product is coloured.)

#### **QUESTION THREE: Electrolysis of Aluminium Oxide**

Assessor's use only

Aluminium is produced by the electrolysis of aluminium oxide that has been extracted from bauxite ore. A typical electrolysis cell is shown in the diagram below. The oxygen gas produced reacts with the carbon (graphite) electrodes, so that the electrodes have to be replaced from time to time.

[For copyright reasons, this resource cannot be reproduced here. See below.]

Adapted from Chemistry, Ann and Patrick Fullick, Heinemann, 1994.

- (a) On the diagram above:
  - (i) clearly label the anode and the cathode
  - (ii) show the direction of movement of ions in the electrolyte.
- (b) Write balanced half equations for the reactions occurring at:
  - (i) the positive electrode
  - (ii) the negative electrode.
- (c) Write an equation for the reaction that occurs between the oxygen gas and the carbon electrode, and hence explain why the electrode must be replaced from time to time.

Explanation:

#### **QUESTION FOUR: Chlorine**

Assessor's use only

Sodium hypochlorite, NaOCI, reacts with hydrochloric acid to give sodium chloride, NaCI, and chlorine gas,  $\operatorname{Cl}_2$ . It is the reaction between the  $\operatorname{Cl}^-$  and  $\operatorname{OCl}^-$  ions that produces the chlorine gas.

| (i)           |                                                                                             |
|---------------|---------------------------------------------------------------------------------------------|
| /ii\          | OCI <sup>-</sup>                                                                            |
| (ii)          | CI <sup>-</sup>                                                                             |
| (iii)         | Cl <sub>2</sub>                                                                             |
| Write         | balanced ion-electron half equations for the formation of chlorine, Cl <sub>2</sub> , from: |
| (i)           | chloride ion (CI <sup>-</sup> )                                                             |
| (ii)          | hypochlorite ion (OCI <sup>-</sup> )                                                        |
| Ident<br>answ | ify the reaction in part (b) above that is an oxidation reaction, and give reasons for your |
|               |                                                                                             |
| If wa         | rmed, or left to stand, a solution of sodium hypochlorite decomposes as follows:            |
|               | inled, or left to stand, a solution of social hypochionic decomposes as follows.            |
|               | 2NaOCI æÆ 2NaCI + O <sub>2</sub>                                                            |

|                                               | 8                                                                               |     |
|-----------------------------------------------|---------------------------------------------------------------------------------|-----|
| A bottle of bleach contains so ottle's label: | odium hypochlorite. The following information is written on                     | the |
| 'This bleach decays into                      | o common salt and water after it has killed germs. y cleaners containing acid.' |     |
| Discuss the validity of the claim             | ims made on this label.                                                         |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |
|                                               |                                                                                 |     |

## Extra paper for continuation of answers if required. Clearly number the question.

Assessor's use only

| Question<br>Number |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |

# Extra paper for continuation of answers if required. Clearly number the question.

Assessor's use only

| Question<br>Number |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |